Data Sheet for Rolling Objects

Name: ______ Partners: _____

You must use at least one solid ball, one hollow ball, one solid cylinder, and one hollow cylinder. .

Tilted table measurements $L=$ m $h=$ mMeasure the times in seconds (s)						econds (s)
Object	t for d=0.5 m	t ² for d=0.5 m	t for d=1.5 m	t² for d=1.5 m	Slope (m/s ²)	g (m/s²)
Solid Ball						
Hollow Ball						
Solid Cylinder						
Hollow Cylinder						

You then need to graph these data as d vs. t^2 using the supplied graph paper and determine the slopes to the best lines that go through your data using the program at http://yosemitefoothills.com/Calculator using the choice . *Calculate and graph the slope and y-intercept for (x,y) pairs that go exactly through (0,0)*. That program forces the resulting line to go through the origin at (0,0) since necessarily zero distance will correspond to zero time. It also produces a graph of the result that you can check against your graph.

The slope of your graph can be connected to the value of g. For example, for a solid ball $d = \frac{1}{2}gt^2\left(\frac{5}{7}\frac{h}{L}\right)$ and

therefore the graph slope will be $slope = \frac{1}{2}g\left(\frac{5}{7}\frac{h}{L}\right)$ and therefore $g = \frac{14L}{5h} \cdot slope$.

Use the coordinate system below to graph your data, but add a point at (0,0) and draw a best line through your points.