
Detailed Explanation of BlinkingLEDUsingTimer0WithOVFInterrupt.asm Code

In a previous note, entitled Detailed Explanation of BlinkingLEDUsingTimer0.asm Code, I described ATmega328P
assembly code which causes an LED to blink when the timer rolls over to zero. In this note, I describe how an
interrupt can be used to jump to code that causes the blinking; the result is same (except for an added blinking pin), but
studying this code helps one understand how interrupts work in the ATmega328P. This is the code
BlinkingLEDUsingTimer0WithOVFInterrupt.asm . I will assume that the reader has studied and understood the previous
note; only new features will be described here.

Walking through the assembly source code

The BlinkingLEDUsingTimer0WithOVFInterrupt.asm code is in the directory
/home/pi/Programming/Assembly/BlinkingLED/ . When assembled using
avra -l BlinkingLEDUsingTimer0WithOVFInterrupt.lst BlinkingLEDUsingTimer0WithOVFInterrupt.asm ,
the file BlinkingLEDUsingTimer0WithOVFInterrupt.lst contains the following (labels are shown in bold face):

AVRA Ver. 1.3.0 BlinkingLEDUsingTimer0WithOVFInterrupt.asm Tue Jun 23 10:54:12 2015

 .LIST
 .DEF overflowCount = R22
 .DEF statusFlags = R23
 .org 0x0000
C:000000 940c 0034 jmp RESET
C:000002 9518 reti ; EXT_INT0
C:000003 0000 nop
C:000004 9518 reti ; EXT_INT1
C:000005 0000 nop
C:000006 9518 reti ; PCINT0
C:000007 0000 nop
C:000008 9518 reti ; PCINT1
C:000009 0000 nop
C:00000a 9518 reti ; PCINT2
C:00000b 0000 nop
C:00000c 9518 reti ; WDT
C:00000d 0000 nop
C:00000e 9518 reti ; TIM2_COMPA
C:00000f 0000 nop
C:000010 9518 reti ; TIM2_COMPB
C:000011 0000 nop
C:000012 9518 reti ; TIM2_OVF
C:000013 0000 nop
C:000014 9518 reti ; TIM1_CAPT
C:000015 0000 nop
C:000016 9518 reti ; TIM1_COMPA
C:000017 0000 nop
C:000018 9518 reti ; TIM1_COMPB
C:000019 0000 nop
C:00001a 9518 reti ; TIM1_OVF
C:00001b 0000 nop
C:00001c 9518 reti ; TIM0_COMPA
C:00001d 0000 nop
C:00001e 9518 reti ; TIM0_COMPB
C:00001f 0000 nop
C:000020 940c 004b jmp TIM0_OVF ; TIM0_OVF
C:000022 9518 reti ; SPI_STC
C:000023 0000 nop
C:000024 9518 reti ; USART_RXC
C:000025 0000 nop
C:000026 9518 reti ; USART_UDRE
C:000027 0000 nop
C:000028 9518 reti ; USART_TXC
C:000029 0000 nop
C:00002a 9518 reti ; ADC
C:00002b 0000 nop
C:00002c 9518 reti ; EE_RDY
C:00002d 0000 nop
C:00002e 9518 reti ; ANA_COMP
C:00002f 0000 nop
C:000030 9518 reti ; TWI
C:000031 0000 nop
C:000032 9518 reti ; SPM_RDY
C:000033 0000 nop

 ;********************** Reset Handler **********************

 RESET: ; Program initialization
C:000034 e008 ldi r16,high(RAMEND) ; Initialize stack pointer
C:000035 bf0e out SPH,r16
C:000036 ef0f ldi r16,low(RAMEND)

C:000037 bf0d out SPL,r16

 ; Have timer/counter-0 cause a toggle of the state of OC0A (PIND6) each time the count
 ; becomes 0.
 ; Also, use the timer's overflow interrupt to count interrupts in a byte-sized variable,
 ; and then to toggle PIND3 each time that count wraps around to zero.
 ; System clock, by default, is the calibrated RC oscillator operating at 8 MHz.
 ; The pre-scaler, by default, is set to divide by 8 so ClkIO is 1 uS.
 ; The timer/counter-0 divider is set to divide by 64 so it will tick every 64 uS
 ; Since this is an 8-bit counter it will rollover every 256*64=16384 uS and toggle PIND6.
 ; The overflow interrupt will be triggered and the overflow interrupt handler will toggle PIND3
 ; each time it rolls over, every 256*256*64=4194304 uS or about every 4 seconds.
 ; If the overflow count rolls over PIND3 will be toggled. To see it change,
 ; connect PD3 to Buf2 on the Gertboard, and set the output jumper on B2.
 ; The LED will then have a cycle time of 2*256*256*64 us = 8388608 uS

C:000038 e402 ldi r16,(0<<COM0A1)|(1<<COM0A0)|(0<<COM0B1)|(0<<COM0B0)|(1<<WGM01)|(0<<WGM00)
C:000039 bd04 out TCCR0A,r16 ; Set up the CTC (Clear Timer on Compare Match) mode.
C:00003a ef0f ldi r16,0xFF
C:00003b bd07 out OCR0A,r16 ; Set the compare value to 0xFF

C:00003c 9a56 sbi DDRD,DDD6 ; Prepare PIND6 to be an output to drive LED.
C:00003d 9a53 sbi DDRD,DDD3 ; Prepare PIND3 to be an output to drive another LED

C:00003e e003 ldi r16,(0<<FOC0A)|(0<<FOC0B)|(0<<WGM02)|(0<<CS02)|(1<<CS01)|(1<<CS00)
C:00003f bd05 out TCCR0B,r16 ; Set the timer clock divider to ClkIO/64

C:000040 e001 ldi r16,(0<<OCIE0B)|(0<<OCIE0A)|(1<<TOIE0)
C:000041 9300 006e sts TIMSK0,r16 ; Enable overflow interrupt for timer/counter-0

 ; To minimize power consumption, disable power to all subsystems except the timer/counter-0.
 ; Note: Default is 0x00, all subsystems powered.
C:000043 ec0f ldi r16,(1<<PRTWI)|(1<<PRTIM2)|(0<<PRTIM0)|(1<<PRTIM1)|(1<<PRSPI)|(1<<PRUSART0)|(1<<PRADC)
C:000044 9300 0064 sts PRR,r16

C:000046 9478 sei ; Enable interrupts globally

C:000047 e001 ldi r16,(0<<SM2)|(0<<SM1)|(0<<SM0)|(1<<SE) ; Go to ADC noise-reduction sleep
C:000048 bf03 out SMCR,r16
 REPEAT:
C:000049 9588 SLEEP ; Sleep until interrupt occurs
C:00004a cffe rjmp REPEAT ; After interrupt is handled, go back to sleep

 ;********************** Timer0 Overflow Handler **********************

 TIM0_OVF:
C:00004b b77f in statusFlags,SREG

C:00004c 9563 inc overflowCount
C:00004d f409 brne END_TIM0_OVF
C:00004e 9a4b sbi PIND,PIND3

 END_TIM0_OVF:
C:00004f bf7f out SREG,statusFlags
C:000050 9518 reti

Segment usage:
 Code : 81 words (162 bytes)
 Data : 0 bytes
 EEPROM : 0 bytes

Assembly completed with no errors.

Section 12 (pages 57-70) of the ATmega328P datasheet gives the detailed specifications concerning interrupt usage.
When interrupts are used, one must establish an interrupt jump table at the start of memory. The format for this table
requires 2 words (1 word = 2 bytes) for each of the 26 possible interrupts (See Table 14.1, page 57). Each entry is
either a jmp <label> requiring both words of memory, or a nop (no operation) requiring 1 word followed by a reti
instruction (return from interrupt) requiring another word of memory. The comments in the interrupt table give the
name of the interrupt corresponding to each location, most of which are inactive.

The very first instruction jmp RESET is executed when the reset pin (pin 1) goes from low to high. This happens when
power is applied to the processor and also just after a program has been loaded into its program memory. That jmp
instruction (0x940c) causes the program counter register named PC to be loaded with the address (0x0034) of the RESET
label found in the code after the interrupt table.

The code from word 0x0034 to 0x0048 sets up the timer registers and sleep registers, turns on the interrupts with an
sei instruction, and then goes to sleep. When an interrupt occurs, it will wake up, disable further interrupts, check the

interrupt jump table for where to find the interrupt handling routine (in this case TIM0_OVF at word address 0x004b),
save the current value of the PC on the stack, and load the PC with that address. When it reaches a reti (return from
interrupt) instruction, reloads the PC with the value that had been saved on the stack, enables interrupts again, executes
the relative jump instruction (rjmp REPEAT) at word address 0x004a), and goes back to sleep.

The ldi instruction at word address 0x0040 sets bit TOIE0 (timer overflow interrupt enable for timer 0) in the register
TIMSK0 (timer mask for timer 0) so that later when the sei instruction enables the interrupt system, the timer interrupt
can be triggered.

The in statusFlags,SREG instruction at word address 0x004b and the out SREG,statusFlags instruction at word
address 0x004f are necessary at the start and end of every interrupt routine. These save the flag values at the start and
restore them at the end of the interrupt routine so that the code that was running when the interrupt occurred has its
correct flag values. The statusFlags variable refers to general-purpose register r23 as defined at the start of the code.

A variable overflowCount (held in r22) is incremented at word address 0x004c in the overflow interrupt handling
code thereby counting overflows. Code at word address 0x003d sets PIND3 for output and that pin gets toggled at word
address 0x004e when the overflowCount value wraps around to zero. An LED attached to PIND3 will therefore blink
at a 256-times slower rate than one attached to PIND6.

