Pi-to-Pi Conferencing Overview

Video

On the source computer, the camera is accessed by the camera program using the Video4Linux2 library (driver:
bcm2835_v412). camera compresses each frame using the turbojpeg library and then sends it to the target IP in
tcp packets.

On the display computer, the viewer program receives the data, decompresses it using the turbojpeg library,
and displays it in the video framebuffer using the Video4Linux2 library.

Audio

The talk program uses the alsa sound system library to receive the microphone data, the opus library to
compress it, and the tcp to send it over the network. I originally tried to use the ortp library which sends the
sound data as utp packets, but found that ssh tunnels only can forward tcp packets. Simply skipping the rtp
protocol and using tcp appears to work well. Each frame of compressed sound data is preceded by a single byte
containing its length. The frames are typically 50 to 100 bytes in length so a single byte seems sufficient.

It is then played by the 1isten program which receives the tcp packets, uncompresses it with the opus library,
and plays it using the alsa sound system library. The player has a buffer that collects a few kB of sound data
before playing it so that irregularities in the Internet delivery can be ironed out.

Getting Through the Network and Firewalls

The network connections are illustrated in the diagram on the following page. At the left side is a Raspberry Pi
called raspberrypi5 (address 10.0.0.2) on the server 64.118.100.243 running our local network. On the right
side is a Raspberry Pi called raspberrypi (address 192.168.1.13) on a local network connected to an Internet
Service Provider server with address 172.72.143.30. The server at 64.118.100.243 has a firewall that can be
modified us, but the server at 172.72.143.30 cannot. Therefore, a user on raspberrypi can ssh to
raspberrypis, but the reverse is not normally possible.

A user on raspberrypi can, however, use ssh to create a reverse tunnel using
ssh -R 2345:localhost:22 pi@64.118.100.243

that connects the ssh port (port 22) of raspberrypi to a local port (port 2345) on raspberrypi5. This requires
an adjustment (shown below) to the firewall on 64.118.100.243. With that tunnel, a user on raspberrypi5 can

ssh to his local port 2345 using
ssh -p 2345 pi@localhost

and acquire a command shell on raspberrypi.

To run the video conference, a user on raspberrypi starts both camera-viewer pairs using

cd ~/Programming/Pi2Pi
./VideoConf.py

Passwords or ssh key handshakes are required. The script can be edited to select different sizes and frame rates
for the video. The user at raspberrypi5 only needs have his computer on and his firewall set to forward from
her dynamic IP address. That address can be found by using

netstat -t -n

and seeing which address is connected to port 2345.

The audio communication is set up by the initiating user doing

./AudioConf.py

Both video and audio scripts are stopped by doing a typing a Ctrl-c which causes the scripts to shutdown cleanly
after a few seconds and writing a stats file with the average transfer information for the session.

The firewall on 64.118.100.243 needs to have the following iptables entries in its nat (network address
translation) table in order to permit a user on the masqueraded network with address 172.72.143.30 to reach
10.0.0.2 on the local network of 64.118.100.243. The audio is uses port 1350 and the video uses port 5010.

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

DNAT tecp -- 172.72.143.30 0.0.0.0/0 tcp dpt:22 t0:10.0.0.2
DNAT tcp -- 172.72.143.30 0.0.0.0/0 tcp dpt:1350 to0:10.0.0.2
DNAT tecp -- 172.72.143.30 0.0.0.0/0 tcp dpt:1360 t0:10.0.0.2
DNAT tcp -- 172.72.143.30 0.0.0.0/0 tcp dpt:5000 to0:10.0.0.2
DNAT tecp -- 172.72.143.30 0.0.0.0/0 tcp dpt:5010 t0:10.0.0.2
Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

MASQUERADE all -- 10.0.0.2 0.0.0.0/0

Video Sources

The sources for the video camera and viewer programs are in the subdirectory and video. That directory hs a
suitable Makefile for compilation of those programs.

The turbojpeg library is needed: sudo apt-get install libturbojpeg-dev

The module bcm2835_v412 and related modules are usually already available in Raspbian. Its APIs are used for
accessing the camera. The framebuffer APIs are used for the viewer which is why the video output is not under
control of the X-window system.

Audio Sources

The audio sources are in the directory Audio and have been considerably altered from the original tx and rx
programs provided by Mark Hills under the name trx. The talk program and listen program both use a
defaults.h file that sets some command-line defaults. I have set those for what seems to work adequately with
my USB microphone (GoMic) and for using the built-in sound driver. I have tentatively concluded that using
the USB microphone's output jack for driving speakers introduces clicking into the audio. Using the audio sent
out the HDMI connector should be best.

The alterations allow from writing the audio to one file or a set of individual files and using the tcp protocol
instead of ortp. Also, on the listen end, a buffer is used so that several seconds of audio can be acquired before it
is played. The parameters controlling the buffering in listener.c are

#define BUFFER_SIZE 8192*16

#define BUFFER_THRESHOLD_SIZE 2048
#define BUFFER_REWIND_TARGET 1024*16

Controlling Programs

The videoConf.py and AudioConf.py programs run the video and audio respectively. They set the parameters
for the camera, viewer, talk, and listen programs, set up ssh tunnels, set volumes, and help them gracefully close
down when a <Ctrl-c> is received. The camera and talk programs write summaries in Stats-video-Camera,
Stats-video-Viewer, and Stats-Audio files when shutdown. If a debug parameter is set to non-zero values of
1 or 2 in their header files, diagnostic output is placed in files diagnostic_camera, diagnostic_viewer,
diagnostic_talk, and diagnostic_listen. The camera program is currently set to automatically shutdown
after 3 hours.

A Tkinter Python GUI program called ConfGUI can be used to run the video and audio communication from
touch screen or mouse activation. It is placed in ~/Desktop and then double-clicked to start it.

¥G2'1'891°¢6T

i) JOM]ON J9PINOI
e 2 DRSNS YI0M13N dWoH s,Breld
st oUuJlalu] S,ole 28T
bt ”_. H _ ! H v‘_ JaAIas Uss s,a1ey] 0] SSadde %om%%%ommw
€ 1°89T°261 sanib alay Gyeg wod +'2'89T°Z6T
2'1'891°¢6T TT'89T°¢6T— -£°2'89T°26T uaurew
e ol 05 €T 22T — 19UIBI| }—evzooTeTTve 4 SEE e
il 1°0°0°0T— Buipesanbse UIpeISNBSEN-T°0'0°0T e
¥G2°'0°'0°0T e IS
£6Z'0'0°0T s1anas Buiobino FPREoSV Rt DI0/0) O] 7’000t
e pue yss Buiwosul oe'evlcL'clT €000T
ol . W04} O] 1911pal 01 13S [[emally
5000t 0] Paso|d [[lemally Z0'0°0T
7'0'0°0T GidAuagdsel
€000t
¢'000T

191ndwo9 s,6reld 01 Jaindwod s,aney uo uod Aue
[uueyd ‘felsauab ul ‘ued reyr siaIndwod syl usamiaqg aney Aq palreald si auuny yss, pardAious uy "Z'0°0°0T 01 SEZ 1od plemioy [[emally S) aaey
ISNW £%72°00T'8TT 9 JoAas ‘os|y "welboid Juald yss s,aiey Ag 210219y} pue 1aulalu] ay) Woly passadde Apoalip ag ued Yolym ,Ssalppe d| onels, e sey £42°00T ' 8TT 9
“19pinoad 18ula1u] Jay Aq pax20|q SI 3l 9SNBIS(19UISIU| BY] WO} PASSS22. 3¢ JoUURd ISAISS S,a11eY 1Ng ‘siaindwod 11yl uo Buiuuni SI9AISS UYss aney 1snw aney| pue Brel) ylog
J9Indwod s,airey uo BuiyiAue pue gz uod 1aAIas YSS S,a11ed 01 SS8d9. ureiqo 03 ,1soyedo|@id Gyeg d- yss, puewwod ay) sasn Bresd ‘uondauuod syl dn 19s sey aned Jayy
‘promssed s,aney mouy isnw Breld pue plomssed s,Bresd mouy| 1Isnw aney| “1aIndwod s,aney ssadde 01 £42°00T '8TT 779 AQ PaAISS iomiau aul 4o 2'0°0°0T uo id
lasn se BreiD smoje 3lomiau Japinoid 18ulaiu] Jay Jo €T°T'89T 26T Jaindwod uo aney| Aq uni usym ,£¢2°'00T 8TT 9@ Id ZZ:1S0y[eao|:5Ez H- UsS, puelIwod ay L

(Wwo9°s||1Y100J3UWIASOA ‘SHZ 00T STT V9 SSalppe 213els) yJomiau s,61el1d uo z'0°'0°0T ssaippe yum gidAuagdsen s,61e1d
0} [auun) yss ue dn s13s (0€'SPT 22 2.T SSalppe pateys) }Iom)au asnoy uoyedls ay} uo £T°1°89T 26T SSaippe Yum Id Aiiagdsey e uo aneyy

SI19AI9S UBPPIH SS9V 01 uondo Y- S yum buipuun] HSS buisn

Pi — to — Pi Video Conferencing

CPU Hardware: Raspberry Pi 2 (or 3) from Raspberry Pi Foundation using ARM hardware architecture
https://en.wikipedia.org/wiki/Raspberry Pi Foundation

https://www.raspberrypi.org/

Operating System: Raspbian-Jessie, a version of Debian Linux
https://www.raspbian.org/

Microphone: USB GoMic from Samson (Raspberry Pi 3 would use a Bluetooth microphone)
http://www.samsontech.com/samson/products/microphones/usb-microphones/gomic/

Audio System: ALSA, Advanced Linux Sound Architecture
https://en.wikipedia.org/wiki/Advanced Linux Sound Architecture

http://www.alsa-project.org/main/index.php/Main Page
Audio Compression: Opus

https://en.wikipedia.org/wiki/Opus %28audio format%29
https://www.opus-codec.org/

Audio Networking: RTP — Real-Time Transport Protocol (Not used since cannot go through ssh tunnels.)
https://en.wikipedia.org/wiki/Real-time Transport Protocol
http://www.linphone.org/technical-corner/ortp/overview

Camera: Raspberry Pi Camera
https://www.raspberrypi.org/products/camera-module/

Video Compression: Turbo JPEG
http://www.libjpeg-turbo.org/Main/HomePage

Camera Driver: V4L2 — Video for Linux 2
https://en.wikipedia.org/wiki/Video4Linux

Normal Display: Either Raspberry Pi Display (800x480 with touch screen) or HDMI
https://www.raspberrypi.org/products/raspberry-pi-touch-display/

Video Overlay: Linux Frame Buffer

https://en.wikipedia.org/wiki/Linux_framebuffer
http://tldp.org/HOWTO/Framebuffer-HOWTO/

http://elinux.org/RPi Framebuffer

Networking: IP/TCP — Internet Protocol/Transport Control Protocol

https://en.wikipedia.org/wiki/Transmission Control Protocol
http://www.linuxhowtos.org/C_C++/socket.htm

Coordination: Python programs using subprocess library

https://docs.python.org/3/library/subprocess.html

Tkinter provides a GUI window that can run the python command-line programs.

https://docs.python.org/3.5/library/tk.html and https://www.tcl.tk/man/tcl8.5/
An outstanding set of Tkinter examples by Stephen Ferg can be found at

http://www.ferg.org/thinking in tkinter/all programs.html
(For Python 3, they need to be edited to use parentheses in print statements, tkinter for Tkinter, and input()
for raw_input().

Memory Leak Testing: valgrind is a useful program. Here are examples of its use:
sudo apt-get install valgrind

valgrind --leak-check=yes ./camera 592 444 5 3600 127.0.0.1 5010
valgrind --leak-check=yes ./viewer 10.0.0.6 5010 592 444 208 36 0 8

https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation
http://www.ferg.org/thinking_in_tkinter/all_programs.html
https://www.tcl.tk/man/tcl8.5/
https://docs.python.org/3.5/library/tk.html
https://docs.python.org/3/library/subprocess.html
http://www.linuxhowtos.org/C_C++/socket.htm
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://elinux.org/RPi_Framebuffer
http://tldp.org/HOWTO/Framebuffer-HOWTO/
https://en.wikipedia.org/wiki/Linux_framebuffer
https://www.raspberrypi.org/products/raspberry-pi-touch-display/
https://en.wikipedia.org/wiki/Video4Linux
http://www.libjpeg-turbo.org/Main/HomePage
https://www.raspberrypi.org/products/camera-module/
http://www.linphone.org/technical-corner/ortp/overview
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://www.opus-codec.org/
https://en.wikipedia.org/wiki/Opus_(audio_format)
http://www.alsa-project.org/main/index.php/Main_Page
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
http://www.samsontech.com/samson/products/microphones/usb-microphones/gomic/
https://www.raspbian.org/
https://www.raspberrypi.org/

