Lab Activities for Lab 1

Your name:	Lab Parti	ners		
For calculation practi	ice with scientific notati	on, see the handout sh	eet on scientific notatio	on.
1. Measure tables (he millimeters.	ight, width, and length)	. Aim for 1 mm accu	racy, Express in meters,	centimeters, and
	m x	m x	m	
	cm x	cm x	cm	
	mm x	mm x	mm	
	of this paper with micro s in m, cm, mm and µm	•	5	vision on the
decimal:	m =	cm =	mm =	μm
scientific notation: _	m			
3. Measure a strand o and also in m using s	of hair (diameter). Aim a cientific notation.	for 20 µm accuracy. I	Express in m, cm, mm a	nd µm using decimals
decimal:	m =	cm =	mm =	μm
	scientific	notation:	m	
	ns of lab room (length, v n = 0.01 m accuracy. An	— ,		ume in m ³ . Express in
	m _ x	m x	m V _{room} =	m ³
5. Measure the diame	eter of each of 5 marbles	s with 20 μm accuracy	z. Express in mm. (Hint	: about 15.00 mm)
	e and standard deviation http://yosemitefoothills.c			
average d:	mm +/-	m	m	
6. Calculate the avera (Hint: about 1767 m	age volume of your 5 ma m ³ = 1.767 cm ³)	arbles. Express your 1	result as mm ³ , and cm ³ .	
V	$r_{\text{average}} = \frac{4}{3} \pi r^3 = \frac{1}{6} \pi d^3 =$	I	nm ³ =	_ cm ³
7. Weigh the 5 marble (Hint: about 4.00 g)	es one at a time with a d	ligital scale (that I wil	l provide) that has 0.01	gram (g) precision.

8. Calculate the average and standard deviation of your 5 mass measurements. You can use a computer or phone application or go to http://yosemitefoothills.com/Calculator/ and use my on-line application.

*m*_{average}= _____g +/- _____g

9. Calculate the density of a typical marble by dividing your average mass in grams by your average volume in cm^3 . Express your result with units of g/cm^3 and in kg/m³. (Hint: 1 $g/cm^3 = 1000 \text{ kg/m}^3$)

 $\rho_{\text{average}} = \frac{m_{\text{average}}}{V_{\text{average}}} = \underline{g/\text{cm}^3} = \underline{kg/\text{m}^3}$

Ways of counting

10. Direct: number of ABC blocks = _____ x ____ x ____ + ____ = ____

11. Estimate the number of marbles by mass = (total mass – jar mass)/your average marble mass.

mass of marbles $m_{\text{marbles}} = m_{\text{jar with marbles}} - m_{\text{jar}} = _____ g$ (tare capability used on scale)

$$N \approx \frac{m_{marbles}}{m_{average}} =$$

12. Number of marbles by volume = (volume water displaced) / your average marble volume

mass of water in filled jar $m_{\text{water in filled jar}} = m_{\text{jar full of water}} - m_{\text{jar}} = _____g$

mass of water and marbles in jar $m_{water + marbles} = m_{jar+marbles+water} - m_{jars} = _____ g$

 $m_{\text{displaced water}} = m_{\text{water in filled jar}} - (m_{\text{water}+\text{marbles}} - m_{\text{marbles}}) = _____ g$

 $V_{marbles} = V_{displaced water} = \frac{m_{displaced water}}{\rho_{water}} = \frac{m_{displaced water}}{0.997 \text{ g/cm}^3} = \dots \text{ cm}^3 \qquad N \approx \frac{V_{marbles}}{V_{average}} = \dots$

Note: 1 mL = 0.001 L = 1 cm³ = 10^{-6} m³

- 13. Number of marbles by counting (shared effort of entire class): *N* = ______
- 14. If the volume of an average grain of salt is about 0.03 mm³, how big would a container of salt need to be that holds 6.02 x 10²³ grains of salt? Hint: Multiply the volume of a grain by the number of grains. Express your result in km³ and if it were in the shape of a cube, give the length of a side of that cube in km.

 $V_{\text{salt cube}} =$ _____ $\text{mm}^3 =$ _____ km^3 $l_{\text{side}} = \sqrt[3]{V_{\text{salt cube}}}$ _____ km^3

15. How much mass would that amount have if the density of salt is $\rho_{salt} = 2.16 \text{ g/cm}^3 = 2160 \text{ kg/m}^3$? Hint: Multiply the volume by this density and adjust units. Express your answer in kg.

 $m_{\text{salt cube}} = \rho_{\text{salt}} \cdot V_{\text{salt cube}} =$ _____ kg