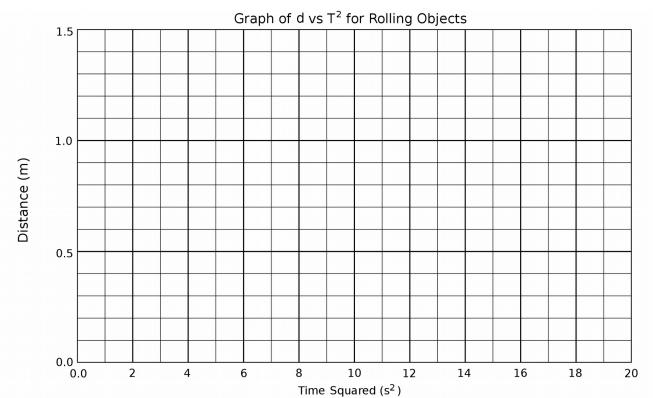
Data Sheet for Rolling Objects

Name:	Partners:
-------	-----------


You must use at least one solid ball, one hollow ball, one solid cylinder, and one hollow cylinder.

Tilted table measurements L= m h= m Measure the times in seconds (s)

Object	t for d=0.5 m	t² for d=0.5 m	t for d=1.5 m	t² for d=1.5 m	Slope (m/s²)	g (m/s ²)
Solid Ball						
Hollow Ball						
Solid Cylinder						
Hollow Cylinder						

You then need to graph these data as d vs. t^2 using the supplied graph paper and determine the slopes to the best lines that go through your data using the program at http://yosemitefoothills.com/Calculator using the choice . Calculate and graph the slope and y-intercept for (x,y) pairs that go exactly through (0,0) . That program forces the resulting line to go through the origin at (0,0) since necessarily zero distance will correspond to zero time. It also produces a graph of the result that you can check against your graph.

The slope of your graph can be connected to the value of g. For example, for a solid ball $d=\frac{1}{2}gt^2\left(\frac{5}{7}\frac{h}{L}\right)$ and therefore the graph slope will be $slope=\frac{1}{2}g\left(\frac{5}{7}\frac{h}{L}\right)$ and therefore $g=\frac{14L}{5h}\cdot slope$.

Use the coordinate system below to graph your data, but add a point at (0,0) and draw a best line through your points.