Chemical Reactions - Extent and Speed

Consider the reactions when we dissolved baking soda NaHCO₃, washing soda Na₂CO₃, and chalk CaCO₃ in water and when we added vinegar, (6-7% acetic acid in water) to them.

Solubility of NaHCO₃ in water: dissolved, but not quickly up to a maximum of 9 g/100 mL Solubility of Na₂CO₃ in water: dissolved quickly up to a maximum of 21.5g/100 mL Solubility of CaCO₃ in water: did not dissolve noticeably, but did up to a maximum of 0.0013g/100 mL

Reaction of NaHCO₃ with vinegar: yes, violently, foamed up with released CO₂ gas Reaction of Na₂CO₃ with vinegar: yes, bubbles of CO₂ gas formed Reaction of CaCO₃ with vinegar: yes, but extremely slowly, helps if CaCO₃ is ground to a fine powder

Mixture of H_2 and O_2 gases at room temperature and no spark: essentially no reaction Mixture of H_2 and O_2 gases with spark: explosive reaction

Diamond at room temperature: changes to carbon so slowly it appears stable

Chemical reactions can go either way depending on the temperature (energy), entropy (concentration) differences:

Explosions provide their own extra energy to raise the temperature and speed up their reaction.

Combustion proceeds at a speed dependent on oxygen availability and temperature.

Reactions with aqueous reactants and products go both ways, reaching an equilibrium point.

Aqueous reactions that release gas bubbles or form an insoluble solid go to completion.

Lower temperatures slow reactions. Freezing slows food spoilage.

Sea shells dissolve when Ca^{++} and/or CO_3^{--} are removed from the surrounding water. (When additional CO_2 from the atmosphere is dissolved in water, the subsequent reactions reduce the CO_3^{--} concentration.)

Lower threshold energy speeds reactions. Enzymes greatly speed up biological reactions.

Electricity can direct oxidation-reduction reactions like electrolysis of water or electroplating.

Oxidation-reduction reactions can produce electricity.