Name _____ Practice Calculations Test Problems Do-overs Allowed - Show answers with 4 significant figures.

In the following formulas, use $G = 6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$ and $c = 3.00 \times 10^8 \text{ m/s}$. 1. Calculate the gravitational force in newtons using the formula $F = G \frac{m_1 m_2}{d^2}$ where, $m_1 = 5.3 \times 10^{23} \text{kg}$, $m_2 = 64.9 \text{ kg}$ and $d = 8.3 \times 10^8 \text{m}$.

2. Calculate the dimensionless relativistic factor $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ where $v = 2.8 \times 10^8 \,\text{m/s}$.

3. Using $E = mc^2$, calculate the energy in joules released when 3.7×10^{-3} kg is converted to energy.

4. Using $\lambda = \frac{c}{f}$, calculate the wavelength in meters of a photon that has a frequency of 5×10^{15} Hz.

5. Acetic acid, the active ingredient in vinegar, has a pH of 4.756. Calculate the concentration in mol/L of hydronium ions in vinegar using $[H_3O^+]=10^{-pH}$.

6. The concentration of hydronium ions in household ammonia is $2.34 \times 10^{-12} \text{ mol/L}$. Calculate the pH of household ammonia using $pH = -\log_{10}[H_3O^*]$

Practice Calculations Test Problems - Solutions Do-overs Allowed - Show answers with 4 significant figures. (Various forms of acceptable answers are shown.)

In the following formulas, use $G = 6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$ and $c = 3.00 \times 10^8 \text{ m/s}$. 1. Calculate the gravitational force in newtons using the formula $F = G \frac{m_1 m_2}{d^2}$ where, $m_1 = 5.3 \times 10^{23} \text{kg}$, $m_2 = 64.9 \text{ kg}$ and $d = 8.3 \times 10^8 \text{ m}$.

$$F = (6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}) \frac{(5.3 \times 10^{23} \text{kg}) \cdot (64.9 \text{kg})}{(8.3 \times 10^8 \text{m})^2} = 3.3304 \times 10^{-3} \text{ N}$$

2. Calculate the dimensionless relativistic factor $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ where $v = 2.8 \times 10^8 \text{ m/s}$.

$$\gamma = \frac{1}{\sqrt{1 - \frac{(2.8 \times 10^8 \,\mathrm{m/s})^2}{(3.00 \times 10^8 \,\mathrm{m/s})^2}}} = \frac{1}{\sqrt{1 - \left(\frac{2.8 \times 10^8 \,\mathrm{m/s}}{3.00 \times 10^8 \,\mathrm{m/s}}\right)^2}}$$

3. Using $E = mc^2$, calculate the energy in joules released when 3.7×10^{-3} kg is converted to energy.

$$E = (3.7 \times 10^{-3} \text{ kg}) \cdot (3.00 \times 10^8 \text{ m/s})^2 = 3.3300 \times 10^{14} \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} = 3.3300 \times 10^{14} \text{ J} = 3.3300 \times 10^{14} \text{ N} \cdot \text{m} = 333.00 \text{ TJ}$$

4. Using $\lambda = \frac{c}{f}$, calculate the wavelength in meters of a photon that has a frequency of 5×10^{15} Hz.

$$\lambda = \frac{3.00 \times 10^8 \,\mathrm{m/s}}{5 \times 10^{15} \,\mathrm{Hz}} = 6.0000 \times 10^{-8} \,\mathrm{m} = 0.060000 \,\mu \,m = 60.000 \,\mathrm{nm}$$

5. Acetic acid, the active ingredient in vinegar, has a pH of 4.756. Calculate the concentration in mol/L of hydronium ions in vinegar using $[H_3O^+]=10^{-pH}$.

$$[H_{3}O^{+}] = 10^{-pH} = 10^{-4.756} = 1.7539 \times 10^{-5} \text{ mol/L}$$

6. The concentration of hydronium ions in household ammonia is $[H_3O^+]=2.34\times10^{-12} \text{ mol/L}$. Calculate the pH of household ammonia using $pH=-\log_{10}[H_3O^+]$

$$pH = -\log_{10}[H_3O^+] = -\log_{10}(2.34 \times 10^{-12} \text{ mol}/L) = 11.631$$

Note: pH has no units, but must be calculated from $[H_3O^+]$ with units of mol/L.